skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jo, Wonse"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interaction and collaboration between humans and multiple robots represent a novel field of research known as human multirobot systems. Adequately designed systems within this field allow teams composed of both humans and robots to work together effectively on tasks, such as monitoring, exploration, and search and rescue operations. This article presents a deep reinforcement learning-based affective workload allocation controller specifically for multihuman multirobot teams. The proposed controller can dynamically reallocate workloads based on the performance of the operators during collaborative missions with multirobot systems. The operators' performances are evaluated through the scores of a self-reported questionnaire (i.e., subjective measurement) and the results of a deep learning-based cognitive workload prediction algorithm that uses physiological and behavioral data (i.e., objective measurement). To evaluate the effectiveness of the proposed controller, we conduct an exploratory user experiment with various allocation strategies. The user experiment uses a multihuman multirobot CCTV monitoring task as an example and carry out comprehensive real-world experiments with 32 human subjects for both quantitative measurement and qualitative analysis. Our results demonstrate the performance and effectiveness of the proposed controller and highlight the importance of incorporating both subjective and objective measurements of the operators' cognitive workload as well as seeking consent for workload transitions, to enhance the performance of multihuman multirobot teams. 
    more » « less
    Free, publicly-accessible full text available December 27, 2025
  2. Accurately measuring and understanding affective loads, such as cognitive and emotional loads, is crucial in the field of human–robot interaction (HRI) research. Although established assessment tools exist for gauging working memory capability in psychology and cognitive neuroscience, few tools are available to specifically measure affective loads. To address this gap, we propose a practical stimulus tool for teleoperated human–robot teams. The tool is comprised of a customizable graphical user interface and subjective questionnaires to measure affective loads. We validated that this tool can invoke different levels of affective loads through extensive user experiments. 
    more » « less
  3. This paper presents MOCAS, a multimodal dataset dedicated for human cognitive workload (CWL) assessment. In contrast to existing datasets based on virtual game stimuli, the data in MOCAS was collected from realistic closed-circuit television (CCTV) monitoring tasks, increasing its applicability for real-world scenarios. To build MOCAS, two off-the-shelf wearable sensors and one webcam were utilized to collect physiological signals and behavioral features from 21 human subjects. After each task, participants reported their CWL by completing the NASA-Task Load Index (NASA-TLX) and Instantaneous Self-Assessment (ISA). Personal background (e.g., personality and prior experience) was surveyed using demographic and Big Five Factor personality questionnaires, and two domains of subjective emotion information (i.e., arousal and valence) were obtained from the Self-Assessment Manikin (SAM), which could serve as potential indicators for improving CWL recognition performance. Technical validation was conducted to demonstrate that target CWL levels were elicited during simultaneous CCTV monitoring tasks; its results support the high quality of the collected multimodal signals. 
    more » « less
  4. Human state recognition is a critical topic with pervasive and important applications in human–machine systems. Multimodal fusion, which entails integrating metrics from various data sources, has proven to be a potent method for boosting recognition performance. Although recent multimodal-based models have shown promising results, they often fall short in fully leveraging sophisticated fusion strategies essential for modeling adequate cross-modal dependencies in the fusion representation. Instead, they rely on costly and inconsistent feature crafting and alignment. To address this limitation, we propose an end-to-end multimodal transformer framework for multimodal human state recognition called Husformer. Specifically, we propose using cross-modal transformers, which inspire one modality to reinforce itself through directly attending to latent relevance revealed in other modalities, to fuse different modalities while ensuring sufficient awareness of the cross-modal interactions introduced. Subsequently, we utilize a self-attention transformer to further prioritize contextual information in the fusion representation. Extensive experiments on two human emotion corpora (DEAP and WESAD) and two cognitive load datasets [multimodal dataset for objective cognitive workload assessment on simultaneous tasks (MOCAS) and CogLoad] demonstrate that in the recognition of the human state, our Husformer outperforms both state-of-the-art multimodal baselines and the use of a single modality by a large margin, especially when dealing with raw multimodal features. We also conducted an ablation study to show the benefits of each component in Husformer. Experimental details and source code are available at https://github.com/SMARTlab-Purdue/Husformer. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    This paper introduces a new ROSbag-based multimodal affective dataset for emotional and cognitive states generated using the Robot Operating System (ROS). We utilized images and sounds from the International Affective Pictures System (IAPS) and the International Affective Digitized Sounds (IADS) to stimulate targeted emotions (happiness, sadness, anger, fear, surprise, disgust, and neutral), and a dual N-back game to stimulate different levels of cognitive workload. 30 human subjects participated in the user study; their physiological data were collected using the latest commercial wearable sensors, behavioral data were collected using hardware devices such as cameras, and subjective assessments were carried out through questionnaires. All data were stored in single ROSbag files rather than in conventional Comma-Separated Values (CSV) files. This not only ensures synchronization of signals and videos in a data set, but also allows researchers to easily analyze and verify their algorithms by connecting directly to this dataset through ROS. The generated affective dataset consists of 1,602 ROSbag files, and the size of the dataset is about 787GB. The dataset is made publicly available. We expect that our dataset can be a great resource for many researchers in the fields of affective computing, Human-Computer Interaction (HCI), and Human-Robot Interaction (HRI). 
    more » « less